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Asymptotic analysis of classical wave localization in multiple-scattering random media

Gregory Samelsohn* and Reuven Mazar†

Department of Electrical and Computer Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105,
~Received 17 March 1997!

In this work we consider the localization of classical waves propagating in random continuum. We apply the
method of proper time for the transfer from the elliptic-type wave equation to the generalized parabolic one.
Presenting the solution of the latter equation in the form of the Feynman path integral allows us to estimate the
so-called wave correction terms. These corrections are related to coherent backscattering and recurrent
multiple-scattering events, i.e., to phenomena that cannot be described within the framework of the conven-
tional theories of radiative transfer or small-angle scattering. We evaluate the wave correction to the mean
intensity of a point source located in a statistically homogeneous Gaussian random medium. Our results
confirm that there is an essential difference between two- and three-dimensional systems. We consider both
isotropic and anisotropic media and show in particular that in the latter case there is a critical value of the
anisotropy parameter, below which the system behaves basically as a three-dimensional isotropic medium, i.e.,
the wave correction is positive for all observation angles. Above this critical value the properties of the
medium are similar to those of a layered structure.@S1063-651X~97!04111-1#

PACS number~s!: 03.40.Kf, 42.25.2p, 43.20.1g
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I. INTRODUCTION

Long-term investigations of classical wave propagation
random media have exposed principally two main a
proaches to the effective analysis of a wide spectrum of
sociated phenomena@1–3#. The first of these general ap
proaches, the radiative transfer theory, is based on
phenomenological foundation according to which the to
effect of multiple fields involved in some elementary volum
can be found by a simple noncoherent summation of th
energy fluxes. In this case the transport of the field ha
diffusive character and is governed by intuition-ground
laws related to irreversible processes. Another approac
based on the exact wave formulation and accounts, in p
ciple, for all the wave-nature effects neglected in the tra
port theory.

For a long time it has been assumed that the reductio
the wave picture to the radiation transport under the con
tion of multiple scattering is straightforward. However,
recent decades the use of the wave formulation for the
tistical assertion of the transport theory has led to some
ficulties in describing the wave scattering in the backw
direction@4–8#. In particular, Watson discovered that for an
configuration of scattering centers there exist direct and
versed scattering paths, for which coherent interference
the waves is possible@5#. This constructive interference lead
to the enhancement of backscattered radiation as comp
to the result predicted in the framework of the radiati
transfer theory. In general, it has been understood that co
ence effects are important even after many scattering eve
Further investigations have led to the formulation of the c
cept of the so-called wave correction terms@7#, which are
responsible for some nontrivial effects related to the ti
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symmetry of the wave equations and the consequent rev
ibility of the wave processes.

At the same time, after the discovery of the possibility
electron localization in disordered solids~strong or
Anderson-type localization! @9#, it was recognized that the
main results obtained in quantum mechanics could be tra
ferred to classical~acoustic or electromagnetic! waves@10–
12# ~for a review see Ref.@13#!. Strong localization takes
place if the elastic scattering lengthl s is of the order of the
wavelengthl, such that the characteristic width of the bac
scattering peak, which is equal to aboutl/ l s , enlarges to the
back hemisphere. In this case the wave does not diffus
infinity but is trapped within a bounded spatial region ne
the source. For this reason the backscattering enhance
of classical waves, which was experimentally observed
discrete random media@14–16#, was reported originally as
weak localization, the precursor of the strong~Anderson-
type! one.

Several methods based on looking at the transport p
erties of a multiply scattered wave have been developed
the theoretical description of the localization phenomenon
disordered systems@10,11,17–21#. In these works the local-
ization is concerned with the vanishing of the diffusion co
stant. Therefore, a natural way to search for the localiza
regime is to study the long-time behavior of the avera
two-particle Green’s function far from the source, which co
responds to the low-frequency low-wave-number limit of t
diffusion constant. As a result of numerous investigation
was established in particular that the dimension of the dis
dered medium is a crucial parameter. In one and two dim
sions any degree of disorder leads to a finite localizat
length, while in three dimensions a certain critical degree
disorder is needed before localization will be observed@13#.

In order to consider the localization behavior of a clas
cal wave, we apply here another method analyzing a stat
ary problem, namely, studying asymptotically the mean
tensity distribution in the far field of a point source located
an unbounded statistically homogeneous random medi
6095 © 1997 The American Physical Society
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6096 56GREGORY SAMELSOHN AND REUVEN MAZAR
For the analysis we use the following procedure. First,
apply the method of proper time originally proposed for t
integration of quantum-mechanical equations by Fock@22#
and later developed by Schwinger@23# ~see also Ref.@24#!.
The method is based on the introduction of an additio
pseudotime variable and a transfer to a higher-dimensio
space, in which the propagation process is described by
generalized parabolic equation similar to the nonstation
Schrödinger equation in quantum mechanics. We presen
solution in the form of a Feynman path integral@25#, the
asymptotic evaluation of which in the far field allows us,
principle, to estimate the wave corrections for all statisti
moments of the field. These corrections are related to co
ent backscattering and, using the terminology of@26#, also to
recurrent multiple-scattering events, i.e., to phenomena
cannot be described in the framework of the conventio
radiative transfer theory. For a three-dimensional isotro
medium this program has been realized in our recent pa
@27#. In particular, evaluating the second statistical mom
of the field~average two-particle Green’s function!, we have
obtained that the normalized mean intensity differs fro
unity. We have related such a behavior to the localizat
phenomenon. In the present work we further develop th
results by studying wave correction in both two- and thr
dimensional~2D and 3D! random media, characterized b
isotropic and anisotropic correlation functions.

The outline of this work is as follows. First, in Sec. II w
introduce the generalized parabolic equation and presen
solution in a path-integral form. In order to reduce the fun
tional integral to a finiteN-dimensional one we parametriz
the trajectory, expanding each virtual path into an eigenfu
tion series. Next, using a perturbative technique and re
senting the unknown function as a sum of a leading term p
a correction, we obtain an asymptotic expression for
mean intensity of the wave in the far field. This result, whi
is valid for arbitrary dimension of the medium, is present
in Sec. III. A particular case of one-dimensional system
briefly discussed. Further, in Sec. IV we analyze the wa
correction for isotropic media in both two and three dime
sions. To exemplify the results we evaluate the correction
a Gaussian correlation function with a characteristic scalel « .
In three dimensions the wave correction is positive and h
quite narrow window in which the wavelength is compara
to the correlation scalel « . It is the intermediate spectra
window that possibly separates extended states at
higher and lower frequencies within the framework of t
wave localization concept. In two dimensions the correct
is mainly negative, which can serve as indication of t
Anderson localization. Section V is devoted to the analy
of the localization in anisotropic media, which are the int
mediate case between isotropic media and purely laye
ones. The results obtained there seem to be the more im
tant part of this work. We show that the wave correction in
2D anisotropic medium does not depend on the observa
angle. For the 3D problem the directions along and acr
the quasilayered structure are essentially distinguished
the localization of the wave energy along the layers is
served. The dependence of the wave correction on the an
ropy parameterm manifests a critical behavior. The resul
show that there is a critical value ofm, below which the
medium behaves basically as a three-dimensional isotr
e
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medium, i.e., the wave correction is positive for all observ
tion angles. Above this critical value the properties of t
medium are similar to those of a layered structure. Fina
Sec. VI contains a summary and some principal conclud
remarks.

II. PATH-INTEGRAL REPRESENTATION

We start with the reduced Helmholtz equation describ
the propagation and scattering of scalar time-harmo
waves in an inhomogeneous medium. The Green’s func
is defined by

¹2G~RuR0!1k2@11 «̃~R!#G~RuR0!52d~R2R0!,
~2.1!

whereR denotes the position vector inm-dimensional space
~m52 or 3!, k is the wave number associated with the h
mogeneous medium, and«(R)511 «̃(R) is the random per-
mittivity distribution. We suppose that while« is a real func-
tion, k contains an infinitesimally small positive imagina
part that provides the convergence of some integrals app
ing in the course of the work. Equation~2.1! is known to
serve as a reasonable model for acoustic wave propaga
and also for some electromagnetic problems in which
polarization effects can be neglected.

Let us introduce an auxiliary parabolic equation

2ik]tg1¹2g1k2«̃~R!g~R,tuR0 ,t0!50, t.t0 ,
~2.2a!

with the initial condition

g~R,t0uR0 ,t0!5d~R2R0!. ~2.2b!

Then the Green’s functionG(RuR0) can be defined through
the solution of Eq.~2.2! as

G~RuR0!5
i

2k E
t0

`

dt expF i
k

2
~t2t0!Gg~R,tuR0 ,t0!.

~2.3!

The generalized parabolic equation~2.2! for the Green’s
function g(R,tuR0 ,t0) coincides with the nonstationar
Schrödinger equation in quantum mechanics. Using t
analogy, the solution of Eq.~2.2! can be presented in th
Feynman path-integral form@25#

g~R,tuR0 ,t0!5E
R~t0!5R0

R~t!5R
DR~ t !exp$ iS@R~ t !#%, ~2.4!

where the integration*DR(t) in the continuum of possible
trajectories is interpreted as a sum of contributions of a
trary paths over which a wave propagates from the pointR0
at the momentt0 to the pointR at the momentt and the
functional

S@R~ t !#5
k

2 E
t0

t

dt$@Ṙ~ t !#21 «̃ @R~ t !#% ~2.5!

can be related to the phase accumulated along the co
sponding path.
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56 6097ASYMPTOTIC ANALYSIS OF CLASSICAL WAVE . . .
The path integral can be exactly handled only for Gau
ian integrands, i.e., for the actionS@R(t)# of a quadratic type
@28#. It is clear that investigation of disordered media r
quires an approximate evaluation of the path integral. T
commonly used strategy suggests reducing the original i
gral to a Gaussian form, which can be accomplished b
perturbative technique@28#. In general, we follow this way.
Specifically, using the spectral form of the scattering pot
tial and keeping only the first terms in the series expansio
the exponential, we present the double path-integral rela
to the mean intensity of the wave in a soluble Gaussian fo
~see Sec. III!. The next step, the evaluation of this integr
can be performed by a variety of methods@25,28,29#, all of
them leading, of course, to the same results. We have d
erately chosen, nevertheless, a specific approach, know
orthogonal path expansion, because, in addition to the fi
results, it provides useful information about the relati
weight of arbitrary scattering processes contributing to
unknown wave correction. According to this method we fi
extract from the virtual path

R~ t !5R̄~ t !1Q~ t ! ~2.6!

the classical trajectory

R̄~ t !5
t2t

t2t0
R01

t2t0

t2t0
R, ~2.7!

which is simply the straight line connecting the pointsR0
andR, and expand each curved pathQ(t) into the series

Q~ t !5 (
n51

`

cn~ t !Qn , ~2.8!

wherecn(t) is a complete set of orthogonal functions

cn~ t !5
A2~t2t0!

pn
sinS pnt

t2t0
D . ~2.9!

Next we transfer from the path integral to integration ov
the coefficientsQn of the orthogonal expansion. As a resu
the path integral can be presented in the form

g~R,tuR0 ,t0!5g0~R,tuR0 ,t0!g«~R,tuR0 ,t0!,
~2.10!

whereg0 is the free-space («̃50) Green’s function

g0~R,tuR0 ,t0!5F k

2p i ~t2t0!G
m/2

expF ik~R2R0!2

2~t2t0! G
~2.11!

and the inhomogeneous factorg« is a limit N→` of the
finite-dimensional approximation
-
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g«~R,tuR0 ,t0!5S k

2p i D
mN/2E dmNQnexpS i

k

2 (
n51

N

Qn
2D

3expH i
k

2 E
t0

t

dt «̃ F R̄~ t !

1 (
n51

N

cn~ t !QnG J ~2.12!

~here we use the notationNI 51,2,...,N!, or in a more compact
form

g«~R,tuR0 ,t0!5 R DQ~ t !expH i
k

2 E
t0

t

dt «̃ @R̄~ t !

1Q~ t !#J , ~2.13!

in which the circular integral is used to underline the fact th
all the trajectoriesQ(t) are closed.

The generalized parabolic equation~2.2! satisfies the cau-
sality condition. This means that it describes the scatter
process in the forward direction only, accounting for the t
jectories, which do not have any turning point with respec
the auxiliary pseudotime coordinatet. However, if we con-
sider the projection of a consequent path onto the r
m-dimensional space, we find that this formulation allow
trajectories with multiple@Nth order in the finite-dimensiona
version ~2.12! of the path integral# turning points, i.e., it
takes into account all the backscattering and recurr
multiple-scattering events.

III. EVALUATION OF THE WAVE CORRECTION

Now we define the mean intensity of the wave at a po
R as

^I ~RuR0!&5^G~RuR0&G* ~RuR0!&, ~3.1!

where the angular brackets denote ensemble averaging.
homogeneous medium the intensity distribution in the
field kuR2R0u@1 is given approximately by the relation

I 0~RuR0!5 1
4 km23~2puR2R0u!12m, ~3.2!

which is exact form53. We restrict ourselves by conside
ing a statistically homogeneous random medium, where
mean intensity is a function of the vectorL5R2R0 only. It
is clear that, within the framework of radiative transf
theory, the normalized mean intensity

i~L !5^I ~L !&/I 0~L ! ~3.3!

must be equal to unity, at least for statistically isotropic m
dia. In order to estimate the constructive interference effe
we start with integral representation~2.3!, in which the
Green’s functiong(R,tuR0 ,t0) is given by Eqs.~2.10!–
~2.13!. Next we approximate the normalized mean intens
in the far field by the relation

i~L !5^g«~R,t01LuR0 ,t0!g«* ~R,t01LuR0 ,t0!&.
~3.4!
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6098 56GREGORY SAMELSOHN AND REUVEN MAZAR
As shown@27#, the error due to this approximation is esse
tially smaller than the correction that we try to evaluate. W
assume that the random perturbations«̃(R) are Gaussian
which simplifies the averaging procedure. Then using
representation~2.13! and introducing the sum and differenc
vectors

P~ t !5 1
2 @Q1~ t !1Q2~ t !#, Q~ t !5Q1~ t !2Q2~ t !,

~3.5!

we arrive at the expression

i~L !5 R DP~ t ! R DQ~ t !

3expF2
k2

4 E
0

L

dt1E
0

L

dt2F„t1 ,t2 ;P~ t !,Q~ t !…G ,
~3.6!

where the scattering functionF„t1 ,t2 ;P(t),Q(t)… is given by

F„t1 ,t2 ;P~ t !,Q~ t !…5D«@R1~ t1!2R2~ t2!#

2 1
2 (

j 51

2

D«@Rj~ t1!2Rj~ t2!#.

~3.7!

In formula ~3.7!

D«~R12R2!5^@ «̃~R1!2 «̃~R2!#2& ~3.8!

is the structure function, which is related to the usually us
correlation function

B«~R12R2!5^«̃~R1!«̃~R2!& ~3.9!

as

D«~R!52@B«~0!2B«~R!# ~3.10!

if, obviously,B«(0) exists. The vectorsRj (t) in Eq. ~3.7! are
defined as

Rj~ t !5R̄~ t !1@P~ t !1~21! j 21Q~ t !/2#. ~3.11!

The projection of the trajectoryRj (t) onto the real space i
the realization of a Brownian motion. Let us suppose
simplicity that the scattering potential«̃(R) is of a short-
range type~d correlated inm-dimensional space!. If there are
no self-~mutual! intersections of these projections, then t
scattering functionF is zero andi(L )51, which is natural
for the noncoherent transport picture. The condition of
sence of intersections resembles the self-avoidance cons
on the paths in polymer physics@30#. In the case of classica
waves this means that all scattering events of the propaga
process are fully independent, which could take place onl
the wave ‘‘remembers’’its way in order to avoid multip
visits to the same spatial points. Meanwhile, it is clear t
the longer the trajectory, the higher the probability of se
intersection, and the fraction of self-avoiding paths is ex
nentially small for long trajectories@31#. Just these trajecto
ries define the constructive interference effects a
contribute to the nonzero value of the scattering functionF.
-
e

e

d

r

-
int

on
if

t
-
-

d

Another consequence that can be predicted already is
essential role of dimensionality in possible manifestations
the constructive interference. In fact, as known from t
theory of the self-avoiding walk, form>4 the self-avoiding
constraint is relevant for a set of configurations of zero pr
ability measure, so the Brownian path has no chance to
tersect itself. In three dimensions we can anticipate only
double points, i.e., the points that are visited twice by
Brownian trajectory, while the multiple points of all orde
are relevant in two dimensions@30#.

In order to evaluate the influence of the path intersecti
we employ the following perturbative analysis. We assu
that the contribution from the self-intersection points
rather small, which allows us to expand the exponentia
Eq. ~3.6! into a series and to keep the first two terms only.
this case the normalized mean intensityi(L ) can be pre-
sented as a sum of a leading term, which is simply unity, a
some correction termx, namely,

i~L !511x1••• . ~3.12!

Obviously, such a behavior can be recognized as a man
tation of the phenomenon of classical wave localization@13#
and the investigation of this asymptote can help us in
description of the transition from extended to localiz
states. The wave correction is given as

x5
k2

4 E
0

L

dt1E
0

L

dt2 R DP~ t ! R DQ~ t !

3F„t1 ,t2 ;P~ t !,Q~ t !…. ~3.13!

In order to obtain the soluble quadratic Lagrangian in
path integral we replace the structure function by its Fou
transform

D«~R!52E dmK @12exp~ iR•K !#F«~K !. ~3.14!

Then the path integral can be exactly evaluated and the
rection takes the simple form

x5
k2

2 E
0

L

dt1E
0

L

dt2E dmK F«~K !cos~T•K !

3@cos~ h̃K2!2cos~hK2!#, ~3.15!

whereT is the vector having the absolute value equal tot
5t12t2 and directed along the line connecting the sou
with the observation point. The functionsh(N) and h̃(N)
are presented by the series

h~N!5
1

2k (
n51

N

@cn~ t1!2cn~ t2!#2 ~3.16a!

and

h̃~N!5
1

2k (
n51

N

@cn
2~ t1!2cn

2~ t2!#. ~3.16b!

Exact summation forN→` leads to
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h5
L

2k

t

L S 12
t

L D ~3.17a!

and

h̃5
L

2k

t

L S 12
2t8

L D , ~3.17b!

wheret85 1
2 (t11t2). The method of orthogonal path expa

sion allows us to estimate the relative role of arbitrary pa
in their contribution to the wave correction. In general, t
weight of eachnth term in the series~3.16! decreases as 1/n2

and therefore the higher-order terms have to be negligi
However, a similar procedure, applied to a small-angle s
tering in random mediad correlated along the propagatio
direction, has revealed a slow convergence to the exac
sult, with the error decreasing as;N2a, a,1 @32#. Never-
theless, in that case even the first term alone has led to
qualitative description of the expected effects. This is not
in our studies when the multiplicity of the scattering proce
becomes the most important element of the wave localiza
phenomenon. In fact, the functionsh(N) and h̃(N) become
close to their exact versions given by Eqs.~3.17! only when
a large number of eigenfunctions are taken into acco
Physically this corresponds to a wave process that inclu
many backscattering and recurrent scattering events. Su
distinction between the exact version and its finite-term
proximation can provide not only a quantitative difference
the solution but also dramatic changes in its behavior,
cluding the sign of the final result.

Using now the exact expressions~3.17! and integrating in
Eq. ~3.15! over the difference coordinatet, we obtain

x5k2E
0

L

dt~L2t !E dmK F«~K !cos~T•K !

3@~hK2!21sin~hK2!2cos~hK2!#. ~3.18!

Further, forL/kl«
2@1 Eq. ~3.18! acquires a simplified form

x5k2LE
0

`

dtE dmK F«~K !cos~T•K !

3@~ tK2/2k!21sin~ tK2/2k!2cos~ tK2/2k!#.

~3.19!

We may present this result as a convolution of the spect
F«(K ) with a filtering functionf (K ):

x5pk3LE dmK f ~K !F«~K !. ~3.20!

The filtering function is given by

f ~K !5~pk!21E
0

`

dt cos~ tKb!@~ tk2/2k!21sin~ tK2/2k!

2cos~ tK2/2k!#, ~3.21!

where the parameterb5ucos(T,K )u is determined by the
angle between the observation direction and the directio
s

e.
t-

e-

he
o
s
n

t.
es
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-

-

m

of

the spatial vectorK . In order to perform the integration in
Eq. ~3.21! we introduce an auxiliary function

Fn~K !5~2/p!K22E
0

`

dt t21cos~ tKb!sin~ntK2/2k!,

~3.22!

which allows us to rewrite the filtering functionf (K ) as

f ~K !5F1~K !2@~]/]n!Fn~K !#n51 . ~3.23!

Evaluation of the integral in Eq.~3.22! yields

Fn~K !5K22q~nK22kb!, ~3.24!

whereq(z) is the step function. Consequently, according
Eq. ~3.23!, f (K ) is expressed as

f ~K !5K22q~K22kb!2K21d~K22kb!. ~3.25!

In particular, for a one-dimensional systemb[1 and the
wave correction becomes

x52pk3LF E
2k

`

dK K22F«~K !2~2k!21F«~2k!G .
~3.26!

One can verify easily that in this case the correction is ne
tive for any monotonically decreasing spectrumF«(K). The
appearance of the specific spatial frequencyK52k in the
result is not surprising because it is simply the condition
the Bragg reflection resonance for a periodic lattice. Furth
more, we see that for spectra with a single characteri
scalel « , the effect is maximal fork;1/l « , i.e., for wave-
lengths comparable with the correlation length of the m
dium. At low frequenciesx;v2 and the high-frequency be
havior of the correction is governed by theK→` decrease
of the spectrumF«(K). Being presented in terms of th
localization length, which is inversely proportional to th
correction obtained, this picture coincides exactly with t
frequency dependence studied in@33# for the model of a
randomly layered medium with continuously varying para
eters. Restricting analysis of the 1D localization by the
observations, we proceed with the study of two- and thr
dimensional media, which are the main subject of the pres
work.

IV. ISOTROPIC MEDIA

For an isotropic spectrumF«(K) the wave correction in
both two- and three-dimensional systems can be rewritte
the form

x52pk2LE
0

`

dK f~K !F«~K !, ~4.1!

where the scalar filtering functionf (K) depends on the di-
mensionality of the problem.

Two dimensions.In this case the filtering function is give
by
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6100 56GREGORY SAMELSOHN AND REUVEN MAZAR
f ~K !5KE
0

`

dt J0~ tK !@~ tK2/2k!21sin~ tK2/2k!

2cos~ tK2/2k!#, ~4.2!

whereJ0(z) is the Bessel function. After integration we fin

f ~K !5 H ~2k/K !arcsin~K/2k!21/A12K2/4k2, K,2k
pk/K, K>2k.

~4.3!

For small values of the parameterK/2k the filtering function
has asymptotic behaviorf (K)52K2/12k2 and its absolute
value increases withK, having a singularity atK52k.

Three dimensions.In this case we get

f ~K !52KE
0

`

dt t21sin~ tK !@~ tK2/2k!21sin~ tK2/2k!

2cos~ tK2/2k!#. ~4.4!

Evaluation of the integral leads to

f ~K !5 H 0,
2pk,

K,2k
K>2k. ~4.5!

According to Eq.~4.5!, only the spatial frequenciesK>2k,
which are the sources of evanescent waves in the cas
single scattering@3#, give a contribution to the wave correc
tion.

For a numerical example we use the simplest Gaus
correlation function

B«~R!5s«
2exp~2R2/ l «

2!, ~4.6!

wheres«
2 is the dispersion of fluctuations andl « is the char-

acteristic scale of inhomogeneities of the medium. Suc
correlation function corresponds to the spectral density

F«~K !5~2Ap!2ml «
ms«

2exp~2 l «
2K2/4!. ~4.7!

For this spectrum the wave correction in both two- and thr
dimensional cases can be written as

x5s~k!l s«
2, ~4.8!

where we have introduced the dimensionless parameter

k5kl« , l 5L/ l « . ~4.9!

In two dimensions the normalized wave corrections(k) is
defined as

s~k!5~p/2!k3@E1~k!2exp~2k2/2!I 0~k2/2!1F~k!#,

~4.10a!

whereE1(z) is the exponential integral,I 0(z) is the Bessel
function, andF(z) is given by

F~z!5~2/p!E
0

1

dt t21arcsint exp~2z2t2!.

~4.10b!

In the three-dimensional case,

s~k!5~p/2!k3 erfc~k!. ~4.11!
of

n

a

-

The dependence of the wave correction on the normali
wave numberk for both two- and three-dimensional prob
lems is shown in Fig. 1. We see that there is an essen
difference between two- and three-dimensional systems.
the 3D problem the wave correction in the far field is po
tive and has a quite narrow window in which the waveleng
is comparable to the correlation scalel « . Roughly speaking,
in this spectral window the medium behaves as a rand
resonant cavity accumulating the energy near the sou
Within the framework of the wave localization concept, it
the intermediate spectral window that separates exten
states at both higher and lower frequencies when the diso
is strong enough@13#. Irrespective of the actual possibility o
strong localization in 3D systems, this result states the o
mal conditions suitable for observing nonlinear effects
enhanced absorption in weakly dissipative random media

In two dimensions there are negative values of the corr
tion in the far field. This fact can serve as an addition
independent indication of the possibility of strong Anderso
type localization in 2D random media. Unfortunately, o
results, due to their asymptotic nature, cannot be a base
the exact prediction of localization; nevertheless, they co
be a useful supplement to the results of other approac
which, as a rule, only qualitatively describe the localizati
transition for classical waves. In particular, the advantage
our approach lies in its capability to trace the dependenc
the correction on the correlation properties of the disord
including such an interesting case as anisotropic media.

V. ANISOTROPIC MEDIA

In many situations the medium is characterized by an
isotropic spectrum of random inhomogeneities. The g
physical environment, such as Earth’s subsurface, an un
water channel, or turbulent inhomogeneities in t
atmosphere and ionosphere, with their predominantly laye
structure, can serve as an example. All these media are c
acterized by inhomogeneous structures having the horizo
scales much greater than the vertical ones.

For the calculations in this case we use the general re
sentation of the wave correction, Eq.~3.20!, with filtering
function ~3.25!. Further analytical simplification can b

FIG. 1. Normalized wave correction in the 2D and 3D isotrop
media as a function of the normalized wave numberk.
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achieved for some given correlation functions only. The
isotropic generalization of the Gaussian correlation funct
~4.6! reads

B«~R!5s«
2exp@2z2/ l «

22r 2/~m l «!2#, m>1, ~5.1!

wherez denotes the vertical coordinate,r is the horizontal
(m21)-dimensional vector, and the parameterm character-
izes the degree of anisotropy of the medium. Particularly,
m51 this correlation function reduces to its isotropic versi
~4.6!. The correlation function~5.1! corresponds to the spec
trum

F«~K !5~2Ap!2mmm21l «
ms«

2exp~2 l «
2Kz

2/42m2l «
2Kr

2/4!,

~5.2!

whereKz andK r are, respectively, the vertical and horizon
components of the spatial wave numberK .

Two dimensions.In this case, introducing the polar coo
dinates gives

x5pk3LE
0

2p

dwE
1

`

dx@x21F«~2kbx,w!2F«~2kb,w!#.

~5.3!

Then, evaluating the integral overx, we obtain the same
formula as Eq.~4.8!, but with the coefficients(k,m) depend-
ing on the anisotropy parameterm as well,

s~k,m!5 1
8 mk3E

0

2p

dw@E1~a2k2!22 exp~2a2k2!#.

~5.4!

Here we have denoted

a2[a2~w,w0 ,m!5~cos2w1m2sin2w!cos2~w2w0!
~5.5!

and w0 is the observation angle. For isotropic media (m
51) the correction does not depend onw0 and Eq.~5.4!
reduces to the relation

s~k!5 1
2 k3E

0

p/2

dw@E1~k2cos2w!22 exp~2k2cos2w!#,

~5.6!

which represents another form of Eq.~4.10!. It can be easily
verified that even in the general case (mÞ1) ds/dw050 for
any value of w0 . Thus the wave correction in a two
dimensional anisotropic medium does not depend on the
servation angle, at least under the conditions of applicab
of the asymptotic procedure used. The wave correction
function of the normalized wave numberk for some values
of the anisotropy parameter is plotted in Fig. 2. The effec
anisotropy causes only a change in the dependence on
wave number. It is interesting that for some range ofm the
wave correction is greater than for an isotropic system.

Three dimensions.In this case, the wave correction i
spherical coordinates has the form
-
n

r

l

b-
y
a

f
the

x52pk4LE
0

2p

dwE
0

p

du b sinuE
1

`

dx@F«~2kbx,w,u!

2F«~2kb,w,u!#. ~5.7!

For the Gaussian spectrum~5.2! the correction term can be
expressed by the same equation~4.8! with the coefficients
depending on the observation angleu0 :

s~k,m,u0!5 1
8 mk3E

0

2p

dwE
0

p

du@11~mtanu!22#21/2

3@erfc~ak!22p21/2akexp~2a2k2!#,

~5.8!

where

a2[a2~w,u,u0 ,m!5~cos2u1m2sin2u!~cosucosu0

1sinusinu0cosw!2. ~5.9!

In three-dimensional media the directions along a
across the quasilayered structure are essentially dis
guished. The normalized wave correction as a function of
anisotropy parameterm for the vertical direction~observation
angleu050°! is shown in Fig. 3~a!. Above some value ofm
the wave correction is negative and, consequently, fok
;1 the mean intensity in the vertical direction is less than
the homogeneous medium. In Fig. 3~b! the same dependenc
is shown for the horizontal direction~observation angleu0
590°!. In this case we obtain the increase of the mean
tensity for all degrees of anisotropy and for all wave-numb
values, which means the localization of the wave ene
along the layers. This effect was investigated by many
thors for purely layered random media@33–35#. Our results
give additional information, permitting the investigation
the case intermediate between purely layered and isotr
systems.

In Fig. 4 the normalized wave correction is shown as
function of the observation angle. It is interesting that fo
given value ofm there is a sector of observation angles f

FIG. 2. Normalized wave correction in the 2D anisotropic m
dium for m52, 4, and 8 as a function of the normalized wa
numberk. The dashed line corresponds to the isotropic casem
51).



the
as
c-
of

um,
es.
re

ing

th-
ga-
the
of
the

the
ga-
tion

n be
e, is
pe

ve
int
me-
hat
re-
tion,
ing
ne-

ion
ven
s,
h

, as

e
ve
(

e
n
(

e-

6102 56GREGORY SAMELSOHN AND REUVEN MAZAR
FIG. 3. Normalized wave correction in the 3D anisotropic m
dium for m52, 4, and 8 as a function of the normalized wa
numberk. The dashed line corresponds to the isotropic casem
51). ~a! Vertical direction ~observation angleu050°! and ~b!
horizontal direction~observation angleu0590°!.

FIG. 4. Normalized wave correction in the 3D anisotropic m
dium for k51 andm52, 4, and 8 as a function of the observatio
angle u0 . The dashed line corresponds to the isotropic casem
51).
which the field intensity decreases more quickly than in
vertical direction. In Fig. 5 we present the wave correction
a function of the anisotropy parameter for the vertical dire
tion. This dependence shows that there is a critical value
m ~which is equal to about 1.7!, below which the medium
behaves basically as a three-dimensional isotropic medi
i.e., the wave correction is positive for all observation angl
Above this critical value the properties of the medium a
similar to those of a layered structure. Another interest
feature is the existence of a finite value ofm ~for the Gauss-
ian spectrum this value is equal to 3.1! for which the local-
ization effect is maximal in some sense.

VI. SUMMARY AND CONCLUSIONS

In this paper we have implemented the Feynman pa
integral approach to the problem of classical wave propa
tion in random media. For this purpose we have applied
method originally proposed by Fock for the integration
quantum-mechanical equations. The method is based on
introduction of an additional pseudotime variable and
transfer to a higher-dimensional space in which the propa
tion process is described by a generalized parabolic equa
similar to the nonstationary Schro¨dinger equation in quantum
mechanics. The advantage of such a transfer, which ca
interpreted also as a version of the embedding techniqu
that it allows us to present the solution of the parabolic-ty
equation in a functional-integral form.

Applying the generalized path-integral solution, we ha
examined the mean intensity of the field excited by a po
source in a statistically homogeneous Gaussian random
dium. By using a perturbative technique we have shown t
the normalized mean intensity in the far field can be p
sented as the sum of the leading term and some correc
which is related physically to the coherent backscatter
and repeated multiple scattering by the same inhomoge
ities. In diagrammatic language, this means that in addit
to ladder diagrams, our perturbative approach accounts, e
in the first-order approximation, for all possible diagram
including maximally crossed and ‘‘recurrent’’ones, whic
are responsible for the localization mechanisms. In fact

-

-

FIG. 5. Normalized wave correction in the 3D anisotropic m
dium for k51 and the vertical direction~observation angleu0

50°! as a function of the anisotropy parameterm.
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shown, the dependence of the correction term on the w
number has a quite narrow peak centered at the typical
tial frequency in the random medium spectrum. This dep
dence does not differ significantly from that obtained in cl
sical works concerning wave localization in discrete rand
media.

The results indicate that there is an essential differe
between two- and three-dimensional systems. While in th
dimensions the wave correction in the far field is positive,
2D systems there are negative values of the correction.
fact can serve as an additional independent confirmatio
the possibility of strong Anderson-type localization in 2
random media. In the case of anisotropic spectra the beha
of the correction for 2D and 3D systems is also different.
two dimensions the wave correction does not depend on
observation angle. In three-dimensional media the directi
along and across the quasilayered structure are essen
distinguished. Moreover, the investigation of the wave c
rection as a function of anisotropy parameter shows
there is a critical value ofm, below which the medium be
haves basically as a three-dimensional isotropic medium,
the wave correction is positive for all observation angl
m
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Above this critical value the localization of the wave ener
along the quasilayered structure is observed.

Hence the technique applied in our work allowed us
account for coherent backscattering effects and, by eval
ing the wave correction for the mean intensity of the field,
study the localization properties of randomly perturbed c
tinuous media. We also hope that the limitations of the
proach, due to the asymptotic procedures used, could
mitigated by application of direct numerical techniques, p
ticularly Monte Carlo methods, to the evaluation of the fun
tional integrals.
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