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Asymptotic analysis of classical wave localization in multiple-scattering random media
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In this work we consider the localization of classical waves propagating in random continuum. We apply the
method of proper time for the transfer from the elliptic-type wave equation to the generalized parabolic one.
Presenting the solution of the latter equation in the form of the Feynman path integral allows us to estimate the
so-called wave correction terms. These corrections are related to coherent backscattering and recurrent
multiple-scattering events, i.e., to phenomena that cannot be described within the framework of the conven-
tional theories of radiative transfer or small-angle scattering. We evaluate the wave correction to the mean
intensity of a point source located in a statistically homogeneous Gaussian random medium. Our results
confirm that there is an essential difference between two- and three-dimensional systems. We consider both
isotropic and anisotropic media and show in particular that in the latter case there is a critical value of the
anisotropy parameter, below which the system behaves basically as a three-dimensional isotropic medium, i.e.,
the wave correction is positive for all observation angles. Above this critical value the properties of the
medium are similar to those of a layered struct{i81063-651X97)04111-1

PACS numbds): 03.40.Kf, 42.25-p, 43.20:+g

[. INTRODUCTION symmetry of the wave equations and the consequent revers-
ibility of the wave processes.

Long-term investigations of classical wave propagation in At the same time, after the discovery of the possibility of
random media have exposed principally two main ap-electron localization in disordered solid¢strong or
proaches to the effective analysis of a wide spectrum of asAnderson-type localization[9], it was recognized that the
sociated phenomenid—3]. The first of these general ap- main results obtained in quantum mechanics could be trans-
proaches, the radiative transfer theory, is based on thterred to classicalacoustic or electromagnetievaves[10—
phenomenological foundation according to which the totall2] (for a review see Ref{13]). Strong localization takes
effect of multiple fields involved in some elementary volume place if the elastic scattering lengithis of the order of the
can be found by a simple noncoherent summation of theifvavelengthi, such that the characteristic width of the back-
energy fluxes. In this case the transport of the field has &cattering peak, which is equal to abauts, enlarges to the
diffusive character and is governed by intuition-grounded_baCk hemisphere. In this case the wave does not diffuse to

laws related to irreversible processes. Another approach §finity butis trapped within a bounded spatial region near

based on the exact wave formulation and accounts. in prmt_he source. For this reason the backscattering enhancement

ciple, for all the wave-nature effects neglected in the transpTc classical waves, Wh'Ch was experlmentally_o_bserved In
port theory discrete random medigl4—16, was reported originally as
) vaeak localization, the precursor of the strof@ynderson-

For a long time it has been assumed that the reduction %ype) one

the wave p|pture to thg raq|at|on 'transport under the copdl- Several methods based on looking at the transport prop-
tion of multiple scattering is straightforward. _However, iN o ries of a multiply scattered wave have been developed for
r_ec_ent decad_es the use of the wave formulation for the SFElhe theoretical description of the localization phenomenon in
tistical assertion of the transport theory has led to some difgisordered systen[d0,11,17—21 In these works the local-
ficulties in describing the wave scattering in the backwardyation is concerned with the vanishing of the diffusion con-
direction[4—8]. In particular, Watson discovered that for any siant. Therefore, a natural way to search for the localization
configuration of scattering centers there exist direct and reregime is to study the long-time behavior of the average
versed scattering paths, for which coherent interference afyo-particle Green’s function far from the source, which cor-
the waves is possiblé]. This constructive interference leads responds to the low-frequency low-wave-number limit of the
to the enhancement of backscattered radiation as compareiiffusion constant. As a result of numerous investigations it
to the result predicted in the framework of the radiativewas established in particular that the dimension of the disor-
transfer theory. In general, it has been understood that cohetlered medium is a crucial parameter. In one and two dimen-
ence effects are important even after many scattering eventsions any degree of disorder leads to a finite localization
Further investigations have led to the formulation of the condength, while in three dimensions a certain critical degree of
cept of the so-called wave correction terfi§, which are  disorder is needed before localization will be obserjEs].
responsible for some nontrivial effects related to the time In order to consider the localization behavior of a classi-
cal wave, we apply here another method analyzing a station-
ary problem, namely, studying asymptotically the mean in-
*Electronic address: gregory@newton.bgu.ac.il tensity distribution in the far field of a point source located in
TElectronic address: mazar@bguee.bgu.ac.il an unbounded statistically homogeneous random medium.

1063-651X/97/565)/60959)/$10.00 56 6095 © 1997 The American Physical Society



6096 GREGORY SAMELSOHN AND REUVEN MAZAR 56

For the analysis we use the following procedure. First, wamedium, i.e., the wave correction is positive for all observa-
apply the method of proper time originally proposed for thetion angles. Above this critical value the properties of the
integration of quantum-mechanical equations by Ffe®]  medium are similar to those of a layered structure. Finally,
and later developed by Schwingé@3] (see also Ref[24]). Sec. VI contains a summary and some principal concluding
The method is based on the introduction of an additionaremarks.
pseudotime variable and a transfer to a higher-dimensional
space, in which the propagation process is described by the Il. PATH-INTEGRAL REPRESENTATION
generalized parabolic equation similar to the nonstationary
Schralinger equation in quantum mechanics. We present it§h
solution in the form of a Feynman path integf@5s], the
asymptotic evaluation of which in the far field allows us, in
principle, to estimate the wave corrections for all statistical
moments of the field. These corrections are related to coher- V2G(R|R,) + k[ 1+5(R)]G(R|Ry) = — 8(R—Ry),
ent backscattering and, using the terminology2#f], also to (2.1)
recurrent multiple-scattering events, i.e., to phenomena that
cannot be described in the framework of the conventionalvhereR denotes the position vector in-dimensional space
radiative transfer theory. For a three-dimensional isotropigm=2 or 3), k is the wave number associated with the ho-
medium this program has been realized in our recent paperogeneous medium, arqR) =1+7z(R) is the random per-
[27]. In particular, evaluating the second statistical momennittivity distribution. We suppose that whiteis a real func-
of the field (average two-particle Green’s functionve have  tion, k contains an infinitesimally small positive imaginary
obtained that the normalized mean intensity differs frompart that provides the convergence of some integrals appear-
unity. We have related such a behavior to the localizationng in the course of the work. Equatid®.1) is known to
phenomenon. In the present work we further develop thesgerve as a reasonable model for acoustic wave propagation
results by studying wave correction in both two- and threeand also for some electromagnetic problems in which the
dimensional(2D and 3D random media, characterized by polarization effects can be neglected.
isotropic and anisotropic correlation functions. Let us introduce an auxiliary parabolic equation

The outline of this work is as follows. First, in Sec. Il we
introduce the generalized parabolic equation and present its  2ikd,g+ V2g+k?e(R)g(R,7|Rg,79)=0, 7>,
solution in a path-integral form. In order to reduce the func- (2.239
tional integral to a finiteN-dimensional one we parametrize
the trajectory, expanding each virtual path into an eigenfuncwith the initial condition
tion series. Next, using a perturbative technique and repre-
senting the unknown function as a sum of a leading term plus 9(R, 79|Ro,70) = 8(R—Ry).
a correction, we obtain an asymptotic expression for th , . ,
mean intensity of the wave in thz f;r field. Tl’rl)is result, whicherhen thg Green's functio®(R|Ro) can be defined through
is valid for arbitrary dimension of the medium, is presentedthe solution of Eq(2.2) as
in Sec. lll. A particular case of one-dimensional system is

We start with the reduced Helmholtz equation describing
e propagation and scattering of scalar time-harmonic
waves in an inhomogeneous medium. The Green’s function
is defined by

(2.2b

briefly discussed. Further, in Sec. IV we analyze the wave G(R|R,)= L foch ex;{i 5(7_ 7o) |9(R, 7Ry, 70).
correction for isotropic media in both two and three dimen- 2k J 2
sions. To exemplify the results we evaluate the correction for 2.3

a Gaussian correlation function with a characteristic skcale

In three dimensions the wave correction is positive and has
quite narrow window in which the wavelength is comparable
to the correlation scalé,. It is the intermediate spectral
window that possibly separates extended states at bo
higher and lower frequencies within the framework of the
wave localization concept. In two dimensions the correction R
is mainly negative, which can serve as indication of the g(R!TlROaTO):f
Anderson localization. Section V is devoted to the analysis

of the localization in anisotropic media, which are the inter- . ) ) ] .
mediate case between isotropic media and purely layere@here the integratioff DR(t) in the continuum of possible
ones. The results obtained there seem to be the more impdfajectories is interpreted as a sum of contributions of arbi-
tant part of this work. We show that the wave correction in atrary paths over which a wave propagates from the pRint

2D anisotropic medium does not depend on the observatiot the momentr, to the pointR at the momentr and the
angle. For the 3D problem the directions along and acrosfnctional

the quasilayered structure are essentially distinguished and "

the localization of the wave energy along the layers is ob- _C T . 2. =

served. The dependence of the wave correction on the anisot- SR 2 frodt{[R(t)] Te[RON 29

ropy parameteg manifests a critical behavior. The results

show that there is a critical value @f, below which the can be related to the phase accumulated along the corre-
medium behaves basically as a three-dimensional isotropigponding path.

he generalized parabolic equatid®.2) for the Green's
unction g(R,7|Ry,7,) coincides with the nonstationary
Schralinger equation in guantum mechanics. Using this
ﬁ.palogy, the solution of Eq2.2) can be presented in the
Feynman path-integral forif25]

7R DR(t)exgiS[R(1)]}, (2.4)

70)=Ro
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The path integral can be exactly handled only for Gauss-
ian integrands, i.e., for the acti@ R(t)] of a quadratic type
[28]. It is clear that investigation of disordered media re-
quires an approximate evaluation of the path integral. The
commonly used strategy suggests reducing the original inte-
gral to a Gaussian form, which can be accomplished by a
perturbative techniqug28]. In general, we follow this way.
Specifically, using the spectral form of the scattering poten-
tial and keeping only the first terms in the series expansion of
the exponential, we present the double path-integral related
to the mean intensity of the wave in a soluble Gaussian fornthere we use the notatid#i=1,2,...N), or in a more compact
(see Sec. Ill. The next step, the evaluation of this integral, form
can be performed by a variety of methd@®%,28,29, all of
them leading, of course, to the same _rgsults. We have delib- 9.(R, 7Ry, 70) = % DQ(t)exp{i E ffdtg !
erately chosen, nevertheless, a specific approach, known as 2 )
orthogonal path expansion, because, in addition to the final
results, it provides useful information about the relative
weight of arbitrary scattering processes contributing to the
unknown wave correction. According to this method we first

k

gs(“a]“:O!]O) (2
X i

J th{R_(t)
70
N

+n21 wannH

(2.12

R(1)

+Q(t)]], (2.13

extract from the virtual path

R()=R(1)+Q(1) (2.6
the classical trajectory
— 7t t—1g
T—1To T—1To

which is simply the straight line connecting the poifg
andR, and expand each curved pddit) into the series

Q<t>=n§1 Yn(t)Qn, (2.9

where ,,(t) is a complete set of orthogonal functions

()= VZ(; o sin( :n: ) 2.9
0

Next we transfer from the path integral to integration over

the coefficient®Q,, of the orthogonal expansion. As a result,
the path integral can be presented in the form

9(R,7|Rg,70)=09o(R,7|Ro,70)9.(R, 7Ry, 70),
(2.10

whereg, is the free-spaces(=0) Green’s function

m/2
od

and the inhomogeneous factgg is a limit N—oo of the
finite-dimensional approximation

k

ik(R—Rp)?
2m@i(7— 1)

2(t— 1)

do(R, 7Ry, 7o) :[
(2.11

in which the circular integral is used to underline the fact that
all the trajectoriegQ(t) are closed.

The generalized parabolic equati¢h?) satisfies the cau-
sality condition. This means that it describes the scattering
process in the forward direction only, accounting for the tra-
jectories, which do not have any turning point with respect to
the auxiliary pseudotime coordinate However, if we con-
sider the projection of a consequent path onto the real
m-dimensional space, we find that this formulation allows
trajectories with multipléNth order in the finite-dimensional
version (2.12) of the path integrdl turning points, i.e., it
takes into account all the backscattering and recurrent
multiple-scattering events.

Ill. EVALUATION OF THE WAVE CORRECTION

Now we define the mean intensity of the wave at a point
R as
(I(RIR0))=(G(R|Ro)G*(R|Ry)), 3.1
where the angular brackets denote ensemble averaging. In a
homogeneous medium the intensity distribution in the far
field k|R—Rg|>1 is given approximately by the relation
lo(R|Rg) =1k™ 3(2m|R—Rg|)1 ™™, (3.2
which is exact form= 3. We restrict ourselves by consider-
ing a statistically homogeneous random medium, where the
mean intensity is a function of the vector=R— R, only. It
is clear that, within the framework of radiative transfer
theory, the normalized mean intensity

u(L)=(I(L))M1o(L)

must be equal to unity, at least for statistically isotropic me-
dia. In order to estimate the constructive interference effects
we start with integral representatiof2.3), in which the
Green’s functiong(R,7|Rq, 7o) is given by Egs.(2.10—
(2.13. Next we approximate the normalized mean intensity
in the far field by the relation

3.3

u(L)=(9.(R, 70+ L|Rg,70)g5 (R, 70+ L|Rg, 70)).
(3.9
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As shown[27], the error due to this approximation is essen-Another consequence that can be predicted already is the
tially smaller than the correction that we try to evaluate. Weessential role of dimensionality in possible manifestations of
assume that the random perturbatiGn(®R) are Gaussian, the constructive interference. In fact, as known from the
which simplifies the averaging procedure. Then using theheory of the self-avoiding walk, fom=4 the self-avoiding
representatiori2.13 and introducing the sum and difference constraint is relevant for a set of configurations of zero prob-

vectors ability measure, so the Brownian path has no chance to in-
L tersect itself. In three dimensions we can anticipate only the
P(t)=32[Q1(t)+Qx(t)], Q(t)=Qq(t)—Qx(1), double points, i.e., the points that are visited twice by the

(3.9 Brownian trajectory, while the multiple points of all orders
are relevant in two dimensiori80].

In order to evaluate the influence of the path intersections

we employ the following perturbative analysis. We assume

WL)= fﬁDP(t) jg DQ(1) that the contribution from the self-intersection points is
rather small, which allows us to expand the exponential in

2L L Eq. (3.6) into a series and to keep the first two terms only. In

X ex T4 fo dtlfo dtoF (ty, 3P0, Q1) |, this case the normalized mean intensifit) can be pre-
sented as a sum of a leading term, which is simply unity, and
(3.6 some correction terny, namely,

we arrive at the expression

where the scattering functidn(t,,t,;P(t),Q(t)) is given by WL)=1+4y+- . 3.12
F(t1,12:P(1),Q()) =D, [Ra(ty) = Re(t2)] Obviously, such a behavior can be recognized as a manifes-
2 tation of the phenomenon of classical wave localizafib3]
-1y D.[Rj(t1) —Rj(ta)]. and the investigation of this asymptote can help us in the
=1 description of the transition from extended to localized
(3.77  states. The wave correction is given as

In formula (3.7) k? (L L
x=7 | dtu| dt; $ DP(t) § DQ(Y)
D.(R1—Rp)=([2(Ry)~5(R2)]?) (3.9 °
X : . .
is the structure function, which is related to the usually used F(t,t2;P(1),Q(D) (3.13
correlation function In order to obtain the soluble quadratic Lagrangian in the
R path integral we replace the structure function by its Fourier
B.(Ri—R2)=(e(Ry)e(Ry)) (3.9 transform

as

D.(R)=2[B.(0)— B.(R)] (3.10 DS(R)zzf d"K[1—expliR-K)]®,(K). (3.14

if, obviously, B,(0) exists. The vectorR;(t) in Eq.(3.7)are  Then the path integral can be exactly evaluated and the cor-
defined as rection takes the simple form

Ri()=R(1)+[P()+(-1)IQ(t)/2]. (3.1 K2 (L (L
i(O=RMO+[PMO+(-1)!Q)/2].  (3.11 X:?J dt1J dtJde ®,(K)cosT-K)

The projection of the trajectori;(t) onto the real space is 0 0

the realization of a Brownian motion. Let us suppose for X [cog 77K?) —cog 7K?)], (3.19

simplicity that the scattering potentizl(R) is of a short-

range typg(é correlated irm-dimensional spagelf there are  whereT is the vector having the absolute value equat to
no self{mutua) intersections of these projections, then the=t, —t, and directed along the line connecting the source

scattering functiorF is zero andi(L) =1, which is natural ith the observation point. The functiong(N) and 7(N)
for the noncoherent transport picture. The condition of abgre presented by the series

sence of intersections resembles the self-avoidance constraint

on the paths in polymer physi¢80]. In the case of classical 1 N

waves this means that all scattering events of the propagation n(N)= 2K 2 [n(ty) — () ]? (3.163
process are fully independent, which could take place only if n=1
the wave “remembers”its way in order to avoid multiple
visits to the same spatial points. Meanwhile, it is clear thaf*
the longer the trajectory, the higher the probability of self- L N
intersection, and the fraction of self-avoiding paths is expo- ~ N 204 N g2

nentially small for long trajectorieg31]. Just these trajecto- 7(N)= 2 E1 [t = ilto)] (3168
ries define the constructive interference effects and

contribute to the nonzero value of the scattering funckon Exact summation foN—« leads to

nd
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Lt t the spatial vectoK. In order to perform the integration in
T2k L (1_ [) (3.173  Eq. (3.2 we introduce an auxiliary function
and FV(K)=(2/W)K*2J dt t-cos(tK B)sin( vtk ?/2),
0
-~ Lt 2t’ (3.22
n_ﬂf<1_T)’ (3.17h

which allows us to rewrite the filtering functioi{K) as
wheret’ = 3(t; +t,). The method of orthogonal path expan-
sion allows us to estimate the relative role of arbitrary paths f(K)=F1(K)=[(d/dv)F (K)],=1. (3.23
in their contribution to the wave correction. In general, the
weight of eacth term in the serie€3.16) decreases asriy ~ Evaluation of the integral in E¢3.22) yields
and therefore the higher-order terms have to be negligible.
However, a similar procedure, applied to a small-angle scat- F,(K)=K 29(vK—2kpB), (3.29
tering in random media correlated along the propagation
direction, has revealed a slow convergence to the exact ravhered(z) is the step function. Consequently, according to
sult, with the error decreasing asN™ ¢, o<1 [32]. Never- Eq. (3.23, f(K) is expressed as
theless, in that case even the first term alone has led to the
qualitative description of the expected effects. This is not so f(K) =K 2(K—2kB)—K 16(K—2kB). (3.25
in our studies when the multiplicity of the scattering process
becomes the most important element of the wave localizatiom particular, for a one-dimensional syste=1 and the
phenomenon. In fact, the functiongN) and7(N) become wave correction becomes
close to their exact versions given by E¢3.17 only when
a large number of eigenfunctions are taken into account. 3 ® , 4
Physically this corresponds to a wave process that includes X=27K°L Lde K™2®,(K) — (2k) @ ,(2K) |.
many backscattering and recurrent scattering events. Such a (3.26
distinction between the exact version and its finite-term ap-
proximation can provide not only a quantitative difference inqq can verify easily that in this case the correction is nega-

the _solution _but also dr_amatic changes in its behavior, in’[ive for any monotonically decreasing spectrdrg(K). The

cludln_g the sign of the final reSL."t' . L appearance of the specific spatial frequelcy 2k in the
Using now the exgct expressmf&;?) and '”tegfa“”g N result is not surprising because it is simply the condition of
Eq. (3.19 over the difference coordinate we obtain the Bragg reflection resonance for a periodic lattice. Further-
L more, we see that for spectra with a single characteristic

XZkZJ dt(L—t)f d™K &, (K)cogT-K) scalel,, the effect is maximal fok~1/,, i.e., for wave-

0 lengths comparable with the correlation length of the me-
dium. At low frequencies~ w? and the high-frequency be-
havior of the correction is governed by thke—c decrease
of the spectrum®d (K). Being presented in terms of the
localization length, which is inversely proportional to the
correction obtained, this picture coincides exactly with the

X[ (7K?)~sin( 7K?) —cog 7K?)]. (3.18

Further, forL/kl?>1 Eq.(3.18 acquires a simplified form

X=k2Lf dtf d™K &, (K)cogT-K) frequency dependence studied [i83] for the model of a
0 randomly layered medium with continuously varying param-
X[ (tK2/2k) ~Lsin(tK 2/2k) — cog tK2/2K) . eters. Restricting analysis of the 1D localization by these

observations, we proceed with the study of two- and three-
(3.19 dimensional media, which are the main subject of the present

. . work
We may present this result as a convolution of the spectrum

® . (K) with a filtering functionf (K): V. ISOTROPIC MEDIA

X:Wkst d™K f(K)D,(K). (3.20 For an isotropic spectrurd ,(K) the wave correction in
both two- and three-dimensional systems can be rewritten in
. L the form
The filtering function is given by
0 _ 2 *
f(K)z(wk)’lf dt costk B)[ (tk2/2K) ~Lsin(tK2/2k) x=2mk '-fo dK T(K)D(K), “.D
0
—coqtK?/2k)], (3.2)  where the scalar filtering functiof(K) depends on the di-

mensionality of the problem.
where the parametef=|cos({T,K)| is determined by the Two dimensiondn this case the filtering function is given
angle between the observation direction and the direction dby
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© 0.3 ——rr ———ry
f(K)=KJ dt Jo(tK)[(tK2/2k) ~Lsin(tK?/2k)
0 - 02 F E
—cogtK?/2k)], (4.2 = D
'8 0.1 — E
whereJy(2) is the Bessel function. After integration we find §
Q
_ (2k/K)arcsinK/2k) — 111 - KZ/4k?, K<2k g 00
f(K)_[Trk/K, K=2k. E
43 g O
For small values of the parameté€r2k the filtering function
has asymptotic behavidi(K)=—K?/12k? and its absolute o0zr
value increases witK, having a singularity aK = 2k.
Three dimensiondn this case we get V3 e T T,

Normalized wave number «

— “ it t-lei 2191\~ Lai 2
f(K)_ZKL dt tsin(tk)[(tK/2k) = sin(tK=/2k) FIG. 1. Normalized wave correction in the 2D and 3D isotropic

media as a function of the normalized wave numkber
—cogtK?/2k)]. (4.4)
The dependence of the wave correction on the normalized
wave numberx for both two- and three-dimensional prob-
0, K<2k lems is shown in Fig. 1. We see that there is an essential
f(K):[Zwk K =2k (4.5 difference between two- and three-dimensional systems. For
' ' the 3D problem the wave correction in the far field is posi-
According to Eq(45), Oniy the Spa’[iai frequenci%; 2k, tive and has a quite narrow window in which the Wavelength
which are the sources of evanescent waves in the case B comparable to the correlation scale Roughly speaking,
single scattering3], give a contribution to the wave correc- in this spectral window the medium behaves as a random

Evaluation of the integral leads to

tion. resonant cavity accumulating the energy near the source.
For a numerical example we use the simplest Gaussial/ithin the framework of the wave localization concept, it is
correlation function the intermediate spectral window that separates extended
states at both higher and lower frequencies when the disorder
B.(R)=c%exp —R%/1?), (4.6 s strong enoughl3]. Irrespective of the actual possibility of

5. ] ) ) . strong localization in 3D systems, this result states the opti-
whereo is the dispersion of fluctuations amgis the char-  mga| conditions suitable for observing nonlinear effects or
acteristic scale of inhomogeneities of the medium. Such @nhanced absorption in Weakiy dissipative random media.
correlation function corresponds to the spectral density In two dimensions there are negative values of the correc-

tion in the far field. This fact can serve as an additional

P.(K)= (2m) ™™ L“aﬁexp(—IfKZM). (4.7) independent indication of the possibility of strong Anderson-

type localization in 2D random media. Unfortunately, our
results, due to their asymptotic nature, cannot be a base for
the exact prediction of localization; nevertheless, they could
Xzs(K)/’gg, (4.9 be a useful supplement to the results of other approaches,

which, as a rule, only qualitatively describe the localization

where we have introduced the dimensionless parameters transition for classical waves. In particular, the advantage of
our approach lies in its capability to trace the dependence of

For this spectrum the wave correction in both two- and three
dimensional cases can be written as

k=kl;, /=L,. (4.9 the correction on the correlation properties of the disorder,
In two dimensions the normalized wave correcti(ix) is including such an interesting case as anisotropic media.
defined as
V. ANISOTROPIC MEDIA
s(k)=(712) k] [E1( k) —exp( — k212)1 o(k%12) + F(k)],

(4.103 In many situations the medium is characterized by an an-
. o . isotropic spectrum of random inhomogeneities. The geo-
whereE,(z) is the exponential integralo(2) is the Bessel  ppysical environment, such as Earth’s subsurface, an under-

function, andr(2) is given by water channel, or turbulent inhomogeneities in the
1 atmosphere and ionosphere, with their predominantly layered
F(z)= (z/w)i dt t~arcsint exp(— z%t?). structure, can serve as an example. All these media are char-
0

acterized by inhomogeneous structures having the horizontal
(4.10b scales much greater than the vertical ones.
For the calculations in this case we use the general repre-
sentation of the wave correction, E.20, with filtering
s(k)=(m/2) k® erfo( k). (4.1)  function (3.25. Further analytical simplification can be

In the three-dimensional case,
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achieved for some given correlation functions only. The an- 0.2 ———— T
isotropic generalization of the Gaussian correlation function
(4.6) reads
~ 00
B.(R)=o2exd —z2%/12—r%(ul )], wn=1, (5.1) =
Q
wherez denotes the vertical coordinate,is the horizontal L 02k
(m—1)-dimensional vector, and the parametecharacter- S
izes the degree of anisotropy of the medium. Particularly, for &
=1 this correlation function reduces to its isotropic version g 0a
(4.6). The correlation functiorf5.1) corresponds to the spec- 2 ~ [
trum
D, (K)=(2\/m) " ™u™ "o Zexp — 12K 2/4— u?I1?K2/4), 06 —
(5.2 Normalized wave number «

whereK, andK, are, respectively, the vertical and horizontal ~ FIG. 2. Normalized wave correction in the 2D anisotropic me-

components of the spatial wave numlier dium for u=2, 4, and 8 as a function of the normalized wave
Two dimensionsin this case, introducing the polar coor- number«. The dashed line corresponds to the isotropic case (
dinates gives =1).
A LS —277k4Lf2Wd Fde B sinefmdx[cb (2kBX, @, 0)
x=mk Lfo d@DL dX[x™ D (2kBX, ) =D (2KB,¢) ]. X o %], 1 e i
63 ~®,(2kB.¢.0)]. (5.7

Then, evaluating the integral over, we obtain the same For the Gaussian spectruf8.2) the correction term can be
formula as Eq(4.9), but with the coefficiens(«, ) depend-  expressed by the same equati@n8) with the coefficients

ing on the anisotropy parametgras well, depending on the observation anglg
el 2,2 2,2 S(k,i,00)= sk 2Wd Wd6[1+( tang) 2] 12
S(k,pu)=guK . do[E(a“k%)—2 exg —a“k9)]. 1M, 00) =g M o ¢ o )%
(5.4 x [erfdax) — 2~ Y2axexp —aZx?)],
Here we have denoted (5.8
) where
a’=a’(@,¢g, 1) =(coS @+ u’si¢)cos(¢— ¢o)
(5.9 a’=a?(¢, 0,0y, )= (cos 6+ u?sirt§)(coscosd,
and ¢, is the observation angle. For isotropic media ( + sindsinfocosp). (5.9

=1) the correction does not depend ¢g and Eg.(5.4)

. In three-dimensional media the directions along and
reduces to the relation

across the quasilayered structure are essentially distin-
o gu!shed. The normalized wave C(_)rrect_ion asa function of the
s(k)= %Ksj do[ E4(k2c0€e) — 2 expl — k2coe)], anisotropy parameter fqr the vertical directiofobservation
0 angle,=0°) is shown in Fig. 8). Above some value g
(5.6  the wave correction is negative and, consequently, for
~1 the mean intensity in the vertical direction is less than in
which represents another form of Bg.10. It can be easily the homogeneous medium. In FigbBthe same dependence
verified that even in the general cage# 1) ds/dgy=0 for  is shown for the horizontal directiofobservation angleé,
any value of ¢5. Thus the wave correction in a two- =90°). In this case we obtain the increase of the mean in-
dimensional anisotropic medium does not depend on the oliensity for all degrees of anisotropy and for all wave-number
servation angle, at least under the conditions of applicabilitwalues, which means the localization of the wave energy
of the asymptotic procedure used. The wave correction as @aong the layers. This effect was investigated by many au-
function of the normalized wave numberfor some values thors for purely layered random media3—35. Our results
of the anisotropy parameter is plotted in Fig. 2. The effect ofgive additional information, permitting the investigation of
anisotropy causes only a change in the dependence on thiee case intermediate between purely layered and isotropic
wave number. It is interesting that for some rangeuahe  systems.
wave correction is greater than for an isotropic system. In Fig. 4 the normalized wave correction is shown as a
Three dimensionsin this case, the wave correction in function of the observation angle. It is interesting that for a
spherical coordinates has the form given value ofu there is a sector of observation angles for
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Normalized correction s(x)
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(a) Normalized wave number x
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Normalized correction s(x)
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(b) Normalized wave number

FIG. 3. Normalized wave correction in the 3D anisotropic me-
dium for u=2, 4, and 8 as a function of the normalized wave
number k. The dashed line corresponds to the isotropic case (
=1). (a8 Vertical direction (observation angleg,=0°) and (b)

horizontal directionobservation angl@,=90°).

04|

Normalized correction (6 O)

-0.8 -

1 N i )

0 45 90 135

Observation angle 60 (degrees)

180

04 . . —

02 E

0.0

Normalized correction s(u)

Anisotropy parameter p

FIG. 5. Normalized wave correction in the 3D anisotropic me-
dium for k=1 and the vertical directiorfobservation angled,
=0°) as a function of the anisotropy parameter

which the field intensity decreases more quickly than in the
vertical direction. In Fig. 5 we present the wave correction as
a function of the anisotropy parameter for the vertical direc-
tion. This dependence shows that there is a critical value of
© (which is equal to about 1)7below which the medium
behaves basically as a three-dimensional isotropic medium,
i.e., the wave correction is positive for all observation angles.
Above this critical value the properties of the medium are
similar to those of a layered structure. Another interesting
feature is the existence of a finite valueoffor the Gauss-

ian spectrum this value is equal to Bfbr which the local-
ization effect is maximal in some sense.

VI. SUMMARY AND CONCLUSIONS

In this paper we have implemented the Feynman path-
integral approach to the problem of classical wave propaga-
tion in random media. For this purpose we have applied the
method originally proposed by Fock for the integration of
guantum-mechanical equations. The method is based on the
introduction of an additional pseudotime variable and the
transfer to a higher-dimensional space in which the propaga-
tion process is described by a generalized parabolic equation
similar to the nonstationary Schiimger equation in quantum
mechanics. The advantage of such a transfer, which can be
interpreted also as a version of the embedding technique, is
that it allows us to present the solution of the parabolic-type
equation in a functional-integral form.

Applying the generalized path-integral solution, we have
examined the mean intensity of the field excited by a point
source in a statistically homogeneous Gaussian random me-
dium. By using a perturbative technique we have shown that
the normalized mean intensity in the far field can be pre-
sented as the sum of the leading term and some correction,
which is related physically to the coherent backscattering
and repeated multiple scattering by the same inhomogene-
ities. In diagrammatic language, this means that in addition

FIG. 4. Normalized wave correction in the 3D anisotropic me- FO Iaddgr diagrams, our pertu.rbative approach aCCO_UntS, even
dium for k=1 andu=2, 4, and 8 as a function of the observation in the first-order approximation, for all possible diagrams,
angle #,. The dashed line corresponds to the isotropic cagse ( including maximally crossed and “recurrent’ones, which

=1).

are responsible for the localization mechanisms. In fact, as
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shown, the dependence of the correction term on the wavAbove this critical value the localization of the wave energy
number has a quite narrow peak centered at the typical spalong the quasilayered structure is observed.
tial frequency in the random medium spectrum. This depen- Hence the technique applied in our work allowed us to
dence does not differ significantly from that obtained in clas-account for coherent backscattering effects and, by evaluat-
sical works concerning wave localization in discrete randoring the wave correction for the mean intensity of the field, to
media. study the localization properties of randomly perturbed con-
The results indicate that there is an essential differencénuous media. We also hope that the limitations of the ap-
between two- and three-dimensional systems. While in threproach, due to the asymptotic procedures used, could be
dimensions the wave correction in the far field is positive, formitigated by application of direct numerical techniques, par-
2D systems there are negative values of the correction. Thigcularly Monte Carlo methods, to the evaluation of the func-
fact can serve as an additional independent confirmation dfonal integrals.
the possibility of strong Anderson-type localization in 2D
random media. In the case of anisotropic spectra the behavior
of the correction for 2D and 3D systems is also different. In
two dimensions the wave correction does not depend on the G.S. has benefited greatly from conversations with Pro-
observation angle. In three-dimensional media the directionfessor S. A. Gredeskul during the course of this work. G.S. is
along and across the quasilayered structure are essentialyso grateful to Professor D. M. Gitman and many other par-
distinguished. Moreover, the investigation of the wave coricipants of the NATO Advanced Study Institute on Func-
rection as a function of anisotropy parameter shows thational Integration for useful discussions of the path-integral
there is a critical value oft, below which the medium be- approach to both classical and quantum wave problems. This
haves basically as a three-dimensional isotropic medium, i.ework has been supported in part by the Israeli Ministry of
the wave correction is positive for all observation angles.Science(G.S) and by the Israeli Academy of Science.
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